On adaptive inference and confidence bands (1202.5145v1)
Abstract: The problem of existence of adaptive confidence bands for an unknown density $f$ that belongs to a nested scale of H\"{o}lder classes over $\mathbb{R}$ or $[0,1]$ is considered. Whereas honest adaptive inference in this problem is impossible already for a pair of H\"{o}lder balls $\Sigma(r),\Sigma(s),r\ne s$, of fixed radius, a nonparametric distinguishability condition is introduced under which adaptive confidence bands can be shown to exist. It is further shown that this condition is necessary and sufficient for the existence of honest asymptotic confidence bands, and that it is strictly weaker than similar analytic conditions recently employed in Gin\'{e} and Nickl [Ann. Statist. 38 (2010) 1122--1170]. The exceptional sets for which honest inference is not possible have vanishingly small probability under natural priors on H\"{o}lder balls $\Sigma(s)$. If no upper bound for the radius of the H\"{o}lder balls is known, a price for adaptation has to be paid, and near-optimal adaptation is possible for standard procedures. The implications of these findings for a general theory of adaptive inference are discussed.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.