Maximum principle for optimal control of stochastic partial differential equations (1202.4006v1)
Abstract: We shall consider a stochastic maximum principle of optimal control for a control problem associated with a stochastic partial differential equations of the following type: d x(t) = (A(t) x(t) + a (t, u(t)) x(t) + b(t, u(t)) dt + [<\sigma(t, u(t)), x(t)>_K + g (t, u(t))] dM(t), x(0) = x_0 \in K, with some given predictable mappings $a, b, \sigma, g$ and a continuous martingale $M$ taking its values in a Hilbert space $K,$ while $u(\cdot)$ represents a control. The equation is also driven by a random unbounded linear operator $A(t,w), \; t \in [0,T ], $ on $K .$ We shall derive necessary conditions of optimality for this control problem without a convexity assumption on the control domain, where $u(\cdot)$ lives, and also when this control variable is allowed to enter in the martingale part of the equation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.