Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Maximum principle for optimal control of stochastic partial differential equations (1202.4006v1)

Published 17 Feb 2012 in math.PR and math.OC

Abstract: We shall consider a stochastic maximum principle of optimal control for a control problem associated with a stochastic partial differential equations of the following type: d x(t) = (A(t) x(t) + a (t, u(t)) x(t) + b(t, u(t)) dt + [<\sigma(t, u(t)), x(t)>_K + g (t, u(t))] dM(t), x(0) = x_0 \in K, with some given predictable mappings $a, b, \sigma, g$ and a continuous martingale $M$ taking its values in a Hilbert space $K,$ while $u(\cdot)$ represents a control. The equation is also driven by a random unbounded linear operator $A(t,w), \; t \in [0,T ], $ on $K .$ We shall derive necessary conditions of optimality for this control problem without a convexity assumption on the control domain, where $u(\cdot)$ lives, and also when this control variable is allowed to enter in the martingale part of the equation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube