Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Recovering Jointly Sparse Signals via Joint Basis Pursuit (1202.3531v1)

Published 16 Feb 2012 in cs.IT, math.IT, and math.OC

Abstract: This work considers recovery of signals that are sparse over two bases. For instance, a signal might be sparse in both time and frequency, or a matrix can be low rank and sparse simultaneously. To facilitate recovery, we consider minimizing the sum of the $\ell_1$-norms that correspond to each basis, which is a tractable convex approach. We find novel optimality conditions which indicates a gain over traditional approaches where $\ell_1$ minimization is done over only one basis. Next, we analyze these optimality conditions for the particular case of time-frequency bases. Denoting sparsity in the first and second bases by $k_1,k_2$ respectively, we show that, for a general class of signals, using this approach, one requires as small as $O(\max{k_1,k_2}\log\log n)$ measurements for successful recovery hence overcoming the classical requirement of $\Theta(\min{k_1,k_2}\log(\frac{n}{\min{k_1,k_2}}))$ for $\ell_1$ minimization when $k_1\approx k_2$. Extensive simulations show that, our analysis is approximately tight.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.