Papers
Topics
Authors
Recent
2000 character limit reached

Dynamics of two-dimensional evolution algebras (1202.2690v2)

Published 13 Feb 2012 in math.DS and math.AC

Abstract: Recently by Casas, Ladra and Rozikov a notion of a chain of evolution algebras is introduced. This chain is a dynamical system the state of which at each given time is an evolution algebra. The sequence of matrices of the structural constants for this chain of evolution algebras satisfies the Chapman-Kolmogorov equation. In this paper we construct 25 distinct examples of chains of two-dimensional evolution algebras. For all of these 25 chains we study the behavior of the baric property, the behavior of the set of absolute nilpotent elements and dynamics of the set of idempotent elements depending on the time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.