On non-stationary Lamé equation from WZW model and spin-1/2 XYZ chain (1202.1764v3)
Abstract: We study the link between WZW model and the spin-1/2 XYZ chain. This is achieved by comparing the second-order differential equations from them. In the former case, the equation is the Ward-Takahashi identity satisfied by one-point toric conformal blocks. In the latter case, it arises from Baxter's TQ relation. We find that the dimension of the representation space w.r.t. the V-valued primary field in these conformal blocks gets mapped to the total number of chain sites. By doing so, Stroganov's "The Importance of being Odd" (cond-mat/0012035) can be consistently understood in terms of WZW model language. We first confirm this correspondence by taking a trigonometric limit of the XYZ chain. That eigenstates of the resultant two-body Sutherland model from Baxter's TQ relation can be obtained by deforming toric conformal blocks supports our proposal.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.