Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Cooperative Bayesian Nonparametric Framework for Primary User Activity Monitoring in Cognitive Radio Network (1202.0460v1)

Published 2 Feb 2012 in cs.IT, cs.GT, and math.IT

Abstract: This paper introduces a novel approach that enables a number of cognitive radio devices that are observing the availability pattern of a number of primary users(PUs), to cooperate and use \emph{Bayesian nonparametric} techniques to estimate the distributions of the PUs' activity pattern, assumed to be completely unknown. In the proposed model, each cognitive node may have its own individual view on each PU's distribution, and, hence, seeks to find partners having a correlated perception. To address this problem, a coalitional game is formulated between the cognitive devices and an algorithm for cooperative coalition formation is proposed. It is shown that the proposed coalition formation algorithm allows the cognitive nodes that are experiencing a similar behavior from some PUs to self-organize into disjoint, independent coalitions. Inside each coalition, the cooperative cognitive nodes use a combination of Bayesian nonparametric models such as the Dirichlet process and statistical goodness of fit techniques in order to improve the accuracy of the estimated PUs' activity distributions. Simulation results show that the proposed algorithm significantly improves the estimates of the PUs' distributions and yields a performance advantage, in terms of reduction of the average achieved Kullback-Leibler distance between the real and the estimated distributions, reaching up to 36.5% relative the non-cooperative estimates. The results also show that the proposed algorithm enables the cognitive nodes to adapt their cooperative decisions when the actual PUs' distributions change due to, for example, PU mobility.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.