Searching for partial Hadamard matrices (1201.4021v1)
Abstract: Three algorithms looking for pretty large partial Hadamard matrices are described. Here "large" means that hopefully about a third of a Hadamard matrix (which is the best asymptotic result known so far, [dLa00]) is achieved. The first one performs some kind of local exhaustive search, and consequently is expensive from the time consuming point of view. The second one comes from the adaptation of the best genetic algorithm known so far searching for cliques in a graph, due to Singh and Gupta [SG06]. The last one consists in another heuristic search, which prioritizes the required processing time better than the final size of the partial Hadamard matrix to be obtained. In all cases, the key idea is characterizing the adjacency properties of vertices in a particular subgraph G_t of Ito's Hadamard Graph Delta (4t) [Ito85], since cliques of order m in G_t can be seen as (m+3)*4t partial Hadamard matrices.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.