A Converse Sum of Squares Lyapunov Result with a Degree Bound (1201.2619v1)
Abstract: Sum of Squares programming has been used extensively over the past decade for the stability analysis of nonlinear systems but several questions remain unanswered. In this paper, we show that exponential stability of a polynomial vector field on a bounded set implies the existence of a Lyapunov function which is a sum-of-squares of polynomials. In particular, the main result states that if a system is exponentially stable on a bounded nonempty set, then there exists an SOS Lyapunov function which is exponentially decreasing on that bounded set. The proof is constructive and uses the Picard iteration. A bound on the degree of this converse Lyapunov function is also given. This result implies that semidefinite programming can be used to answer the question of stability of a polynomial vector field with a bound on complexity.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.