Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Near Sharp Strichartz estimates with loss in the presence of degenerate hyperbolic trapping (1201.2464v1)

Published 12 Jan 2012 in math.AP

Abstract: We consider an $n$-dimensional spherically symmetric, asymptotically Euclidean manifold with two ends and a codimension 1 trapped set which is degenerately hyperbolic. By separating variables and constructing a semiclassical parametrix for a time scale polynomially beyond Ehrenfest time, we show that solutions to the linear Schr\"odiner equation with initial conditions localized on a spherical harmonic satisfy Strichartz estimates with a loss depending only on the dimension $n$ and independent of the degeneracy. The Strichartz estimates are sharp up to an arbitrary $\beta>0$ loss. This is in contrast to \cite{ChWu-lsm}, where it is shown that solutions satisfy a sharp local smoothing estimate with loss depending only on the degeneracy of the trapped set, independent of the dimension.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.