Partial Searchlight Scheduling is Strongly PSPACE-Complete (1201.2097v4)
Abstract: The problem of searching a polygonal region for an unpredictably moving intruder by a set of stationary guards, each carrying an orientable laser, is known as the Searchlight Scheduling Problem. Determining the computational complexity of deciding if the polygon can be searched by a given set of guards is a long-standing open problem. Here we propose a generalization called the Partial Searchlight Scheduling Problem, in which only a given subregion of the environment has to be searched, as opposed to the entire area. We prove that the corresponding decision problem is strongly PSPACE-complete, both in general and restricted to orthogonal polygons where the region to be searched is a rectangle. Our technique is to reduce from the "edge-to-edge" problem for nondeterministic constraint logic machines, after showing that the computational power of such machines does not change if we allow "asynchronous" edge reversals (as opposed to "sequential").
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.