Langevin type limiting processes for Adaptive MCMC (1201.1433v4)
Abstract: Adaptive Markov Chain Monte Carlo (AMCMC) is a class of MCMC algorithms where the proposal distribution changes at every iteration of the chain. In this case it is important to verify that such a Markov Chain indeed has a stationary distribution. In this paper we discuss a diffusion approximation to a discrete time AMCMC. This diffusion approximation is different when compared to the diffusion approximation as in Gelman, Gilks and Roberts (1997) where the state space increases in dimension to infinity. In our approach the time parameter is sped up in such a way that the limiting distribution (as the mesh size goes to 0) is to a non-trivial continuous time diffusion process.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.