2000 character limit reached
A note on maximal symmetry rank, quasipositive curvature, and low dimensional manifolds (1201.1312v1)
Published 5 Jan 2012 in math.DG
Abstract: We show that any effective isometric torus action of maximal rank on a compact Riemannian manifold with positive (sectional) curvature and maximal symmetry rank, that is, on a positively curved sphere, lens space, complex or real projective space, is equivariantaly diffeomorphic to a linear action. We show that a compact, simply connected Riemannian 4- or 5-manifold of quasipositive curvature and maximal symmetry rank must be diffeomorphic to the 4-sphere, complex projective plane or the 5-sphere.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.