Papers
Topics
Authors
Recent
2000 character limit reached

A Donsker Theorem for Lévy Measures (1201.0590v2)

Published 3 Jan 2012 in math.ST, math.FA, math.PR, and stat.TH

Abstract: Given $n$ equidistant realisations of a L\'evy process $(L_t,\,t\ge 0)$, a natural estimator $\hat N_n$ for the distribution function $N$ of the L\'evy measure is constructed. Under a polynomial decay restriction on the characteristic function $\phi$, a Donsker-type theorem is proved, that is, a functional central limit theorem for the process $\sqrt n (\hat N_n -N)$ in the space of bounded functions away from zero. The limit distribution is a generalised Brownian bridge process with bounded and continuous sample paths whose covariance structure depends on the Fourier-integral operator ${\cal F}{-1}[1/\phi(-\cdot)]$. The class of L\'evy processes covered includes several relevant examples such as compound Poisson, Gamma and self-decomposable processes. Main ideas in the proof include establishing pseudo-locality of the Fourier-integral operator and recent techniques from smoothed empirical processes.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.