2000 character limit reached
The Diffeomorphism Type of Manifolds with Almost Maximal Volume
Published 2 Jan 2012 in math.DG and math.MG | (1201.0415v2)
Abstract: The smallest $r$ so that a metric $r$-ball covers a metric space $M$ is called the radius of $M$. The volume of a metric $r$-ball in the space form of constant curvature $k$ is an upper bound for the volume of any Riemannian manifold with sectional curvature $\geq k$ and radius $\leq r$. We show that when such a manifold has volume almost equal to this upper bound, it is diffeomorphic to a sphere or a real projective space.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.