Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones (1112.5968v2)

Published 27 Dec 2011 in math.FA, math.OC, and math.SP

Abstract: Several notions of spectral radius arise in the study of nonlinear order-preserving positively homogeneous self-maps of cones in Banach spaces. We give conditions that guarantee that all these notions lead to the same value. In particular, we give a Collatz-Wielandt type formula, which characterizes the growth rate of the orbits in terms of eigenvectors in the closed cone or super-eigenvectors in the interior of the cone. This characterization holds when the cone is normal and when a quasi-compactness condition, involving an essential spectral radius defined in terms of $k$-set-contractions, is satisfied. Some fixed point theorems for non-linear maps on cones are derived as intermediate results. We finally apply these results to show that non-linear spectral radii commute with respect to suprema and infima of families of order preserving maps satisfying selection properties.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.