2000 character limit reached
Adaptive spectral regularizations of high dimensional linear models (1112.5890v1)
Published 26 Dec 2011 in math.ST and stat.TH
Abstract: This paper focuses on recovering an unknown vector $\beta$ from the noisy data $Y=X\beta +\sigma\xi$, where $X$ is a known $n\times p$-matrix, $\xi $ is a standard white Gaussian noise, and $\sigma$ is an unknown noise level. In order to estimate $\beta$, a spectral regularization method is used, and our goal is to choose its regularization parameter with the help of the data $Y$. In this paper, we deal solely with regularization methods based on the so-called ordered smoothers and provide some oracle inequalities in the case, where the noise level is unknown.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.