Billiard algebra, integrable line congruences, and double reflection nets (1112.5860v2)
Abstract: The billiard systems within quadrics, playing the role of discrete analogues of geodesics on ellipsoids, are incorporated into the theory of integrable quad-graphs. An initial observation is that the Six-pointed star theorem, as the operational consistency for the billiard algebra, is equivalent to an integrabilty condition of a line congruence. A new notion of the double-reflection nets as a subclass of dual Darboux nets associated with pencils of quadrics is introduced, basic properies and several examples are presented. Corresponding Yang-Baxter maps, associated with pencils of quadrics are defined and discussed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.