Papers
Topics
Authors
Recent
Search
2000 character limit reached

Fourier-Mukai partners of K3 surfaces in positive characteristic

Published 21 Dec 2011 in math.AG and math.NT | (1112.5114v3)

Abstract: We study Fourier-Mukai equivalence of K3 surfaces in positive characteristic and show that the classical results over the complex numbers all generalize. The key result is a positive-characteristic version of the Torelli theorem that uses the derived category in place of the Hodge structure on singular cohomology; this is proven by algebraizing formal lifts of Fourier-Mukai kernels to characteristic zero. As a consequence, any Shioda-supersingular K3 surface is uniquely determined up to isomorphism by its derived category of coherent sheaves. We also study different realizations of Mukai's Hodge structure in algebraic cohomology theories (etale, crystalline, de Rham) and use these to prove: 1) the zeta function of a K3 surface is a derived invariant (discovered independently by Huybrechts); 2) the variational crystalline Hodge conjecture holds for correspondences arising from Fourier-Mukai kernels on products of two K3 surfaces.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.