Papers
Topics
Authors
Recent
2000 character limit reached

Decay of the Navier-Stokes-Poisson equations (1112.4902v1)

Published 21 Dec 2011 in math.AP

Abstract: We establish the time decay rates of the solution to the Cauchy problem for the compressible Navier-Stokes-Poisson system via a refined pure energy method. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. The $\Dot{H}{-s}$($0\le s<3/2$) negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates. As a corollary, we also obtain the usual $Lp$--$L2$($1<p\le 2$) type of the optimal decay rates. Compared to the compressible Navier-Stokes system and the compressible irrotational Euler-Poisson system, our results imply that both the dispersion effect of the electric field and the viscous dissipation contribute to enhance the decay rate of the density. Our proof is based on a family of scaled energy estimates with minimum derivative counts and interpolations among them without linear decay analysis.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.