Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system (1112.4156v1)

Published 18 Dec 2011 in math.AP

Abstract: We study the Neumann initial-boundary value problem for the fully parabolic Keller-Segel system u_t=\Delta u - \nabla \cdot (u\nabla v), \qquad x\in\Omega, \ t>0, [1mm] v_t=\Delta v-v+u, \qquad x\in\Omega, \ t>0, where $\Omega$ is a ball in ${\mathbb{R}}n$ with $n\ge 3$. It is proved that for any prescribed $m>0$ there exist radially symmetric positive initial data $(u_0,v_0) \in C0(\bar\Omega) \times W{1,\infty}(\Omega)$ with $\int_\Omega u_0=m$ such that the corresponding solution blows up in finite time. Moreover, by providing an essentially explicit blow-up criterion it is shown that within the space of all radial functions, the set of such blow-up enforcing initial data indeed is large in an appropriate sense; in particular, this set is dense with respect to the topology of $Lp(\Omega) \times W{1,2}(\Omega)$ for any $p \in (1,\frac{2n}{n+2})$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.