Papers
Topics
Authors
Recent
2000 character limit reached

Minimal Cost of a Brownian Risk without Ruin (1112.4005v1)

Published 17 Dec 2011 in math.OC and q-fin.RM

Abstract: In this paper, we study a risk process modeled by a Brownian motion with drift (the diffusion approximation model). The insurance entity can purchase reinsurance to lower its risk and receive cash injections at discrete times to avoid ruin. Proportional reinsurance and excess-of-loss reinsurance are considered. The objective is to find the optimal reinsurance and cash injection strategy that minimizes the total cost to keep the company's surplus process non-negative, i.e. without ruin, where the cost function is defined as the total discounted value of the injections. The optimal solution is found explicitly by solving the according quasi-variational inequalities (QVIs).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.