Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A 2d spray model with gyroscopic effects (1112.3514v1)

Published 15 Dec 2011 in math.AP

Abstract: In this paper we introduce a PDE system which aims at describing the dynamics of a dispersed phase of particles moving into an incompressible perfect fluid, in two space dimensions. The system couples a Vlasov-type equation and an Euler-type equation: the fluid acts on the dispersed phase through a gyroscopic force whereas the latter contributes to the vorticity of the former. First we give a Dobrushin type derivation of the system as a mean-field limit of a PDE system which describes the dynamics of a finite number of massive pointwise particles moving into an incompressible perfect fluid. This last system is itself inferred from a joint work of the second author with O. Glass and C. Lacave, where the system for one massive pointwise particle was derived as the limit of the motion of a solid body when the body shrinks to a point with fixed mass and circulation. Then we deal with the well-posedness issues including the existence of weak solutions. Next we exhibit the Hamiltonian structure of the system and finally, we study the behavior of the system in the limit where the mass of the particles vanishes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.