Papers
Topics
Authors
Recent
2000 character limit reached

Utility maximization with addictive consumption habit formation in incomplete semimartingale markets

Published 13 Dec 2011 in q-fin.PM, math.OC, and math.PR | (1112.2940v6)

Abstract: This paper studies the continuous time utility maximization problem on consumption with addictive habit formation in incomplete semimartingale markets. Introducing the set of auxiliary state processes and the modified dual space, we embed our original problem into a time-separable utility maximization problem with a shadow random endowment on the product space $\mathbb{L}_+0(\Omega\times [0,T],\mathcal{O},\overline{\mathbb{P}})$. Existence and uniqueness of the optimal solution are established using convex duality approach, where the primal value function is defined on two variables, that is, the initial wealth and the initial standard of living. We also provide sufficient conditions on the stochastic discounting processes and on the utility function for the well-posedness of the original optimization problem. Under the same assumptions, classical proofs in the approach of convex duality analysis can be modified when the auxiliary dual process is not necessarily integrable.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.