Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Gross-Zagier formula for quaternion algebras over totally real fields (1112.2009v1)

Published 9 Dec 2011 in math.NT and math.AG

Abstract: We prove a higher dimensional generalization of Gross and Zagier's theorem on the factorization of differences of singular moduli. Their result is proved by giving a counting formula for the number of isomorphisms between elliptic curves with complex multiplication by two different imaginary quadratic fields $K$ and $K\prime$, when the curves are reduced modulo a supersingular prime and its powers. Equivalently, the Gross-Zagier formula counts optimal embeddings of the ring of integers of an imaginary quadratic field into particular maximal orders in $B_{p, \infty}$, the definite quaternion algebra over $\QQ$ ramified only at $p$ and infinity. Our work gives an analogous counting formula for the number of simultaneous embeddings of the rings of integers of primitive CM fields into superspecial orders in definite quaternion algebras over totally real fields of strict class number 1. Our results can also be viewed as a counting formula for the number of isomorphisms modulo $\frak{p} | p$ between abelian varieties with CM by different fields. Our counting formula can also be used to determine which superspecial primes appear in the factorizations of differences of values of Siegel modular functions at CM points associated to two different CM fields, and to give a bound on those supersingular primes which can appear. In the special case of Jacobians of genus 2 curves, this provides information about the factorizations of numerators of Igusa invariants, and so is also relevant to the problem of constructing genus 2 curves for use in cryptography.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.