Papers
Topics
Authors
Recent
Search
2000 character limit reached

Non-commutative holonomies in 2+1 LQG and Kauffman's brackets

Published 8 Dec 2011 in gr-qc | (1112.1825v1)

Abstract: We investigate the canonical quantization of 2+1 gravity with {\Lambda} > 0 in the canonical framework of LQG. A natural regularization of the constraints of 2+1 gravity can be defined in terms of the holonomies of A\pm = A \PM \surd{\Lambda}e, where the SU(2) connection A and the triad field e are the conjugated variables of the theory. As a first step towards the quantization of these constraints we study the canonical quantization of the holonomy of the connection A_{\lambda} = A + {\lambda}e acting on spin network links of the kinematical Hilbert space of LQG. We provide an explicit construction of the quantum holonomy operator, exhibiting a close relationship between the action of the quantum holonomy at a crossing and Kauffman's q-deformed crossing identity. The crucial difference is that the result is completely described in terms of standard SU(2) spin network states.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.