Chaos in the square billiard with a modified reflection law (1112.1753v2)
Abstract: The purpose of this paper is to study the dynamics of a square billiard with a non-standard reflection law such that the angle of reflection of the particle is a linear contraction of the angle of incidence. We present numerical and analytical arguments that the nonwandering set of this billiard decomposes into three invariant sets, a parabolic attractor, a chaotic attractor and a set consisting of several horseshoes. This scenario implies the positivity of the topological entropy of the billiard, a property that is in sharp contrast with the integrability of the square billiard with the standard reflection law.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.