Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Evaluating Matrix Functions by Resummations on Graphs: the Method of Path-Sums (1112.1588v2)

Published 7 Dec 2011 in math.QA, math-ph, math.MP, and math.RA

Abstract: We introduce the method of path-sums which is a tool for exactly evaluating a function of a discrete matrix with possibly non-commuting entries, based on the closed-form resummation of infinite families of terms in the corresponding Taylor series. If the matrix is finite, our approach yields the exact result in a finite number of steps. We achieve this by combining a mapping between matrix powers and walks on a weighted directed graph with a universal graph-theoretic result on the structure of such walks. We present path-sum expressions for a matrix raised to a complex power, the matrix exponential, matrix inverse, and matrix logarithm. We show that the quasideterminants of a matrix can be naturally formulated in terms of a path-sum, and present examples of the application of the path-sum method. We show that obtaining the inversion height of a matrix inverse and of quasideterminants is an NP-complete problem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.