Papers
Topics
Authors
Recent
2000 character limit reached

The direct L2 geometric structure on a manifold of probability densities with applications to Filtering

Published 29 Nov 2011 in math.PR and math.DG | (1111.6801v2)

Abstract: In this paper we introduce a projection method for the space of probability distributions based on the differential geometric approach to statistics. This method is based on a direct L2 metric as opposed to the usual Hellinger distance and the related Fisher Information metric. We explain how this apparatus can be used for the nonlinear filtering problem, in relationship also to earlier projection methods based on the Fisher metric. Past projection filters focused on the Fisher metric and the exponential families that made the filter correction step exact. In this work we introduce the mixture projection filter, namely the projection filter based on the direct L2 metric and based on a manifold given by a mixture of pre-assigned densities. The resulting prediction step in the filtering problem is described by a linear differential equation, while the correction step can be made exact. We analyze the relationship of a specific class of L2 filters with the Galerkin based nonlinear filters, and highlight the differences with our approach, concerning particularly the continuous--time observations filtering problems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.