2000 character limit reached
Single index regression models in the presence of censoring depending on the covariates (1111.6232v2)
Published 27 Nov 2011 in math.ST and stat.TH
Abstract: Consider a random vector (X',Y)', where X is d-dimensional and Y is one-dimensional. We assume that Y is subject to random right censoring. The aim of this paper is twofold. First, we propose a new estimator of the joint distribution of (X',Y)'. This estimator overcomes the common curse-of-dimensionality problem, by using a new dimension reduction technique. Second, we assume that the relation between X and Y is given by a mean regression single index model, and propose a new estimator of the parameters in this model. The asymptotic properties of all proposed estimators are obtained.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.