Basis of Representation of Universal Algebra (1111.6035v1)
Abstract: We say that there is a representation of the universal algebra B in the universal algebra A if the set of endomorphisms of the universal algebra A has the structure of universal algebra B. Therefore, the role of representation of the universal algebra is similar to the role of symmetry in geometry and physics. Morphism of the representation is the mapping that conserves the structure of the representation. Exploring of morphisms of the representation leads to the concepts of generating set and basis of representation. The set of automorphisms of the representation of the universal algebra forms the group. Twin representations of this group in basis manifold of the representation are called active and passive representations. Passive representation in basis manifold is underlying of concept of geometric object and the theory of invariants of the representation of the universal algebra.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.