Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Block-based Bayesian epistasis association mapping with application to WTCCC type 1 diabetes data (1111.5972v1)

Published 25 Nov 2011 in stat.AP

Abstract: Interactions among multiple genes across the genome may contribute to the risks of many complex human diseases. Whole-genome single nucleotide polymorphisms (SNPs) data collected for many thousands of SNP markers from thousands of individuals under the case--control design promise to shed light on our understanding of such interactions. However, nearby SNPs are highly correlated due to linkage disequilibrium (LD) and the number of possible interactions is too large for exhaustive evaluation. We propose a novel Bayesian method for simultaneously partitioning SNPs into LD-blocks and selecting SNPs within blocks that are associated with the disease, either individually or interactively with other SNPs. When applied to homogeneous population data, the method gives posterior probabilities for LD-block boundaries, which not only result in accurate block partitions of SNPs, but also provide measures of partition uncertainty. When applied to case--control data for association mapping, the method implicitly filters out SNP associations created merely by LD with disease loci within the same blocks. Simulation study showed that this approach is more powerful in detecting multi-locus associations than other methods we tested, including one of ours. When applied to the WTCCC type 1 diabetes data, the method identified many previously known T1D associated genes, including PTPN22, CTLA4, MHC, and IL2RA.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube