Papers
Topics
Authors
Recent
2000 character limit reached

Gauged Linear Sigma Models for toroidal orbifold resolutions (1111.5852v1)

Published 24 Nov 2011 in hep-th

Abstract: Toroidal orbifolds and their resolutions are described within the framework of (2,2) Gauged Linear Sigma Models (GLSMs). Our procedure describes two-tori as hypersurfaces in (weighted) projective spaces. The description is chosen such that the orbifold singularities correspond to the zeros of their homogeneous coordinates. The individual orbifold singularities are resolved using a GLSM guise of non-compact toric resolutions, i.e. replacing discrete orbifold actions by Abelian worldsheet gaugings. Given that we employ the same global coordinates for both the toroidal orbifold and its resolutions, our GLSM formalism confirms the gluing procedure on the level of divisors discussed by Lust et al. Using our global GLSM description we can study the moduli space of such toroidal orbifolds as a whole. In particular, changes in topology can be described as phase transitions of the underlying GLSM. Finally, we argue that certain partially resolvable GLSMs, in which a certain number of fixed points can never be resolved, might be useful for the study of mini-landscape orbifold MSSMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.