Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Discrete Determinants and the Gel'fand-Yaglom formula (1111.5565v3)

Published 23 Nov 2011 in math-ph, gr-qc, hep-th, math.MP, and math.SP

Abstract: I present a partly pedagogic discussion of the Gel'fand-Yaglom formula for the functional determinant of a one-dimensional, second order difference operator, in the simplest settings. The formula is a textbook one in discrete Sturm-Liouville theory and orthogonal polynomials. A two by two matrix approach is developed and applied to Robin boundary conditions. Euler-Rayleigh sums of eigenvalues are computed. A delta potential is introduced as a simple, non-trivial example and extended, in an appendix, to the general case. The continuum limit is considered in a non--rigorous way and a rough comparison with zeta regularised values is made. Vacuum energies are also considered in the free case. Chebyshev polynomials act as free propagators and their properties are developed using the two-matrix formulation, which has some advantages and appears to be novel. A trace formula, rather than a determinant one, is derived for the Gel'fand-Yaglom function.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)