Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite-difference approximation of the inverse Sturm-Liouville problem with frozen argument (2108.10578v1)

Published 24 Aug 2021 in math.NA, cs.NA, and math.SP

Abstract: This paper deals with the discrete system being the finite-difference approximation of the Sturm-Liouville problem with frozen argument. The inverse problem theory is developed for this discrete system. We describe the two principal cases: degenerate and non-degenerate. For these two cases, appropriate inverse problems statements are provided, uniqueness theorems are proved, and reconstruction algorithms are obtained. Moreover, the relationship between the eigenvalues of the continuous problem and its finite-difference approximation is investigated. We obtain the "correction terms" for approximation of the discrete problem eigenvalues by using the eigenvalues of the continuous problem. Relying on these results, we develop a numerical algorithm for recovering the potential of the Sturm-Liouville operator with frozen argument from a finite set of eigenvalues. The effectiveness of this algorithm is illustrated by numerical examples.

Citations (11)

Summary

We haven't generated a summary for this paper yet.