Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Convergence of Finite Element Methods for Hamilton-Jacobi-Bellman Equations

Published 23 Nov 2011 in math.NA and math.OC | (1111.5423v1)

Abstract: In this note we study the convergence of monotone P1 finite element methods on unstructured meshes for fully non-linear Hamilton-Jacobi-Bellman equations arising from stochastic optimal control problems with possibly degenerate, isotropic diffusions. Using elliptic projection operators we treat discretisations which violate the consistency conditions of the framework by Barles and Souganidis. We obtain strong uniform convergence of the numerical solutions and, under non-degeneracy assumptions, strong L2 convergence of the gradients.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.