2000 character limit reached
Bayesian optimization using sequential Monte Carlo (1111.4802v1)
Published 21 Nov 2011 in math.OC, cs.LG, and stat.CO
Abstract: We consider the problem of optimizing a real-valued continuous function $f$ using a Bayesian approach, where the evaluations of $f$ are chosen sequentially by combining prior information about $f$, which is described by a random process model, and past evaluation results. The main difficulty with this approach is to be able to compute the posterior distributions of quantities of interest which are used to choose evaluation points. In this article, we decide to use a Sequential Monte Carlo (SMC) approach.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.