Papers
Topics
Authors
Recent
Search
2000 character limit reached

Power and exponential moments of the number of visits and related quantities for perturbed random walks

Published 17 Nov 2011 in math.PR | (1111.4159v3)

Abstract: Let $(\xi_1,\eta_1),(\xi_2,\eta_2),...$ be a sequence of i.i.d.\ copies of a random vector $(\xi,\eta)$ taking values in $\R2$, and let $S_n := \xi_1+...+\xi_n$. The sequence $(S_{n-1} + \eta_n)_{n \geq 1}$ is then called perturbed random walk. We study random quantities defined in terms of the perturbed random walk: $\tau(x)$, the first time the perturbed random walk exits the interval $(-\infty,x]$, $N(x)$, the number of visits to the interval $(-\infty,x]$, and $\rho(x)$, the last time the perturbed random walk visits the interval $(-\infty,x]$. We provide criteria for the a.s.\ finiteness and for the finiteness of exponential moments of these quantities. Further, we provide criteria for the finiteness of power moments of $N(x)$ and $\rho(x)$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.