Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Using Contextual Information as Virtual Items on Top-N Recommender Systems (1111.2948v2)

Published 12 Nov 2011 in cs.LG and cs.IR

Abstract: Traditionally, recommender systems for the Web deal with applications that have two dimensions, users and items. Based on access logs that relate these dimensions, a recommendation model can be built and used to identify a set of N items that will be of interest to a certain user. In this paper we propose a method to complement the information in the access logs with contextual information without changing the recommendation algorithm. The method consists in representing context as virtual items. We empirically test this method with two top-N recommender systems, an item-based collaborative filtering technique and association rules, on three data sets. The results show that our method is able to take advantage of the context (new dimensions) when it is informative.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.