Multipliers for Continuous Frames in Hilbert Spaces
Abstract: In this paper we examine the general theory of continuous frame multipliers in Hilbert space. These operators are a generalization of the widely used notion of (discrete) frame multipliers. Well-known examples include Anti-Wick operators, STFT multipliers or Calder\'on- Toeplitz operators. Due to the possible peculiarities of the underlying measure spaces, continuous frames do not behave quite as well as their discrete counterparts. Nonetheless, many results similar to the discrete case are proven for continuous frame multipliers as well, for instance compactness and Schatten class properties. Furthermore, the concepts of controlled and weighted frames are transferred to the continuous setting.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.