Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Semiparametric mixtures of symmetric distributions (1111.2247v1)

Published 9 Nov 2011 in math.ST and stat.TH

Abstract: We consider in this paper the semiparametric mixture of two distributions equal up to a shift parameter. The model is said to be semiparametric in the sense that the mixed distribution is not supposed to belong to a parametric family. In order to insure the identifiability of the model it is assumed that the mixed distribution is symmetric, the model being then defined by the mixing proportion, two location parameters, and the probability density function of the mixed distribution. We propose a new class of M-estimators of these parameters based on a Fourier approach, and prove that they are square root consistent under mild regularity conditions. Their finite-sample properties are illustrated by a Monte Carlo study and a benchmark real dataset is also studied with our method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.