2000 character limit reached
LAN property for some fractional type Brownian motion (1111.1077v1)
Published 4 Nov 2011 in math.ST and stat.TH
Abstract: We study asymptotic expansion of the likelihood of a certain class of Gaussian processes characterized by their spectral density $f_\theta$. We consider the case where $f_\theta\PAR{x} \sim_{x\to 0} \ABS{x}{-\al(\theta)}L_\theta(x)$ with $L_\theta$ a slowly varying function and $\al\PAR{\theta}\in (-\infty,1)$. We prove LAN property for these models which include in particular fractional Brownian motion %$B\alpha_t,: \alpha \geq 1/2$ or ARFIMA processes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.