Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi GPU Performance of Conjugate Gradient Solver with Staggered Fermions in Mixed Precision

Published 1 Nov 2011 in physics.comp-ph and hep-lat | (1111.0125v1)

Abstract: GPU has a significantly higher performance in single-precision computing than that of double precision. Hence, it is important to take a maximal advantage of the single precision in the CG inverter, using the mixed precision method. We have implemented mixed precision algorithm to our multi GPU conjugate gradient solver. The single precision calculation use half of the memory that is used by the double precision calculation, which allows twice faster data transfer in memory I/O. In addition, the speed of floating point calculations is 8 times faster in single precision than in double precision. The overall performance of our CUDA code for CG is 145 giga flops per GPU (GTX480), which does not include the infiniband network communication. If we include the infiniband communication, the overall performance is 36 giga flops per GPU (GTX480).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.