2000 character limit reached
Boundary multifractal behaviour for harmonic functions in the ball (1110.5780v2)
Published 26 Oct 2011 in math.CA
Abstract: It is well known that if $h$ is a nonnegative harmonic function in the ball of $\RR{d+1}$ or if $h$ is harmonic in the ball with integrable boundary values, then the radial limit of $h$ exists at almost every point of the boundary. In this paper, we are interested in the exceptional set of points of divergence and in the speed of divergence at these points. In particular, we prove that for generic harmonic functions and for any $\beta\in [0,d]$, the Hausdorff dimension of the set of points $\xi$ on the sphere such that $h(r\xi)$ looks like $(1-r){-\beta}$ is equal to $d-\beta$.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.