Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Boundary multifractal behaviour for harmonic functions in the ball (1110.5780v2)

Published 26 Oct 2011 in math.CA

Abstract: It is well known that if $h$ is a nonnegative harmonic function in the ball of $\RR{d+1}$ or if $h$ is harmonic in the ball with integrable boundary values, then the radial limit of $h$ exists at almost every point of the boundary. In this paper, we are interested in the exceptional set of points of divergence and in the speed of divergence at these points. In particular, we prove that for generic harmonic functions and for any $\beta\in [0,d]$, the Hausdorff dimension of the set of points $\xi$ on the sphere such that $h(r\xi)$ looks like $(1-r){-\beta}$ is equal to $d-\beta$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.