Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

An $L^p$-comparison, $p\in (1,\infty)$, on the finite differences of a discrete harmonic function at the boundary of a discrete box (1905.08151v3)

Published 20 May 2019 in math.NA, cs.NA, math.AP, and math.CA

Abstract: It is well-known that for a harmonic function $u$ defined on the unit ball of the $d$-dimensional Euclidean space, $d\geq 2$, the tangential and normal component of the gradient $\nabla u$ on the sphere are comparable by means of the $Lp$-norms, $p\in(1,\infty)$, up to multiplicative constants that depend only on $d,p$. This paper formulates and proves a discrete analogue of this result for discrete harmonic functions defined on a discrete box on the $d$-dimensional lattice with multiplicative constants that do not depend on the size of the box.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)