Papers
Topics
Authors
Recent
2000 character limit reached

Recovering a Clipped Signal in Sparseland (1110.5063v1)

Published 23 Oct 2011 in cs.IT and math.IT

Abstract: In many data acquisition systems it is common to observe signals whose amplitudes have been clipped. We present two new algorithms for recovering a clipped signal by leveraging the model assumption that the underlying signal is sparse in the frequency domain. Both algorithms employ ideas commonly used in the field of Compressive Sensing; the first is a modified version of Reweighted $\ell_1$ minimization, and the second is a modification of a simple greedy algorithm known as Trivial Pursuit. An empirical investigation shows that both approaches can recover signals with significant levels of clipping

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.