Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Honest adaptive confidence bands and self-similar functions (1110.4985v2)

Published 22 Oct 2011 in math.ST and stat.TH

Abstract: Confidence bands are confidence sets for an unknown function f, containing all functions within some sup-norm distance of an estimator. In the density estimation, regression, and white noise models, we consider the problem of constructing adaptive confidence bands, whose width contracts at an optimal rate over a range of H\"older classes. While adaptive estimators exist, in general adaptive confidence bands do not, and to proceed we must place further conditions on f. We discuss previous approaches to this issue, and show it is necessary to restrict f to fundamentally smaller classes of functions. We then consider the self-similar functions, whose H\"older norm is similar at large and small scales. We show that such functions may be considered typical functions of a given H\"older class, and that the assumption of self-similarity is both necessary and sufficient for the construction of adaptive bands. Finally, we show that this assumption allows us to resolve the problem of undersmoothing, creating bands which are honest simultaneously for functions of any H\"older norm.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.