On 2-switches and isomorphism classes
Abstract: A 2-switch is an edge addition/deletion operation that changes adjacencies in the graph while preserving the degree of each vertex. A well known result states that graphs with the same degree sequence may be changed into each other via sequences of 2-switches. We show that if a 2-switch changes the isomorphism class of a graph, then it must take place in one of four configurations. We also present a sufficient condition for a 2-switch to change the isomorphism class of a graph. As consequences, we give a new characterization of matrogenic graphs and determine the largest hereditary graph family whose members are all the unique realizations (up to isomorphism) of their respective degree sequences.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.