Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On well-posedness of forward-backward SDEs-A unified approach (1110.4658v2)

Published 20 Oct 2011 in math.PR

Abstract: In this paper, we study the well-posedness of the Forward-Backward Stochastic Differential Equations (FBSDE) in a general non-Markovian framework. The main purpose is to find a unified scheme which combines all existing methodology in the literature, and to address some fundamental longstanding problems for non-Markovian FBSDEs. An important device is a decoupling random field that is regular (uniformly Lipschitz in its spatial variable). We show that the regulariy of such decoupling field is closely related to the bounded solution to an associated characteristic BSDE, a backward stochastic Riccati-type equation with superlinear growth in both components $Y$ and $Z$. We establish various sufficient conditions for the well-posedness of an ODE that dominates the characteristic BSDE, which leads to the existence of the desired regular decoupling random field, whence the solvability of the original FBSDE. A synthetic analysis of the solvability is given, as a "User's Guide," for a large class of FBSDEs that are not covered by the existing methods. Some of them have important implications in applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.