Roaming moduli space using dynamical triangulations (1110.4649v1)
Abstract: In critical as well as in non-critical string theory the partition function reduces to an integral over moduli space after integration over matter fields. For non-critical string theory this moduli integrand is known for genus one surfaces. The formalism of dynamical triangulations provides us with a regularization of non-critical string theory. We show how to assign in a simple and geometrical way a moduli parameter to each triangulation. After integrating over possible matter fields we can thus construct the moduli integrand. We show numerically for $c=0$ and $c=-2$ non-critical strings that the moduli integrand converges to the known continuum expression when the number of triangles goes to infinity.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.