Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Sublinear randomized algorithms for skeleton decompositions (1110.4193v2)

Published 19 Oct 2011 in math.NA and cs.NA

Abstract: Let $A$ be a $n$ by $n$ matrix. A skeleton decomposition is any factorization of the form $CUR$ where $C$ comprises columns of $A$, and $R$ comprises rows of $A$. In this paper, we consider uniformly sampling $\l\simeq k \log n$ rows and columns to produce a skeleton decomposition. The algorithm runs in $O(\l3)$ time, and has the following error guarantee. Let $\norm{\cdot}$ denote the 2-norm. Suppose $A\simeq X B YT$ where $X,Y$ each have $k$ orthonormal columns. Assuming that $X,Y$ are incoherent, we show that with high probability, the approximation error $\norm{A-CUR}$ will scale with $(n/\l)\norm{A-X B YT}$ or better. A key step in this algorithm involves regularization. This step is crucial for a nonsymmetric $A$ as empirical results suggest. Finally, we use our proof framework to analyze two existing algorithms in an intuitive way.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.