Sublinear randomized algorithms for skeleton decompositions (1110.4193v2)
Abstract: Let $A$ be a $n$ by $n$ matrix. A skeleton decomposition is any factorization of the form $CUR$ where $C$ comprises columns of $A$, and $R$ comprises rows of $A$. In this paper, we consider uniformly sampling $\l\simeq k \log n$ rows and columns to produce a skeleton decomposition. The algorithm runs in $O(\l3)$ time, and has the following error guarantee. Let $\norm{\cdot}$ denote the 2-norm. Suppose $A\simeq X B YT$ where $X,Y$ each have $k$ orthonormal columns. Assuming that $X,Y$ are incoherent, we show that with high probability, the approximation error $\norm{A-CUR}$ will scale with $(n/\l)\norm{A-X B YT}$ or better. A key step in this algorithm involves regularization. This step is crucial for a nonsymmetric $A$ as empirical results suggest. Finally, we use our proof framework to analyze two existing algorithms in an intuitive way.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.